#))OLICH

FORSCHUNGSZENTRUM

OpenACC CUDA
Interoperability

JSC OpenACC Course 2017

Andreas Herten, Forschungszentrum Jiilich, 17 October 2017

Member of the Helmholtz Association

Contents !) JULICH

. FORSCHUNGSZENTRUM
OpenACC is a team player!

= OpenACC can interplay with
CUDA

= OpenACC can interplay with
GPU-enabled libraries

Andreas Herten | OpenACC Interoperability | 17 October 2017 #2]25

Contents !j JULICH

. FORSCHUNGSZENTRUM
OpenACC is a team player!

Motivation
= OpenACC can interplay with ~ The Keyword
CUDA Tasks
= OpenACC can interplay with Pst ;
GPU-enabled libraries as
Task 3
Task 4

Member of the Helmholtz Association

Andreas Herten | OpenACC Interoperability | 17 October 2017 #2]25

Member of the Helmholtz Association

Motivation A JULICH

FORSCHUNGSZENTRUM

Usually, three reasons for mixing OpenACC with others
Libraries!

— Alot of hard problems have already been solved by others
— Make use of this!

Andreas Herten | OpenACC Interoperability | 17 October 2017 #3]25

Motivation A JULICH

FORSCHUNGSZENTRUM

Usually, three reasons for mixing OpenACC with others
Libraries!
— Alot of hard problems have already been solved by others
— Make use of this!
Existing environment
— You build up on other’s work

— Part of code is already ported (e.g. with CUDA), the rest should
follow

— OpenACCis a good first step in porting, CUDA a possible next

Member of the Helmholtz Association

Andreas Herten | OpenACC Interoperability | 17 October 2017 #3]25

K

Motivation A JULICH

FORSCHUNGSZENTRUM

Usually, three reasons for mixing OpenACC with others
Libraries!
— Alot of hard problems have already been solved by others
— Make use of this!
Existing environment
— You build up on other’s work

— Part of code is already ported (e.g. with CUDA), the rest should
follow

— OpenACCis a good first step in porting, CUDA a possible next
OpenACC coverage
— Sometimes, OpenACC does not support specific part needed (very
well)
— Sometimes, more fine-grained manipulation needed

Andreas Herten | OpenACC Interoperability | 17 October 2017 #3]25

The Keyword A JULICH

OpenACC’s Rosetta Stone e

host_data use_device

£
E
H

Andreas Herten | OpenACC Interoperability | 17 October 2017 #4]25

Member of the Helmholtz Association

The Keyword O JULICH

OpenACC’s Rosetta Stone orenesm

host_data use_device

= Background

— GPU and CPU are different devices, have different memory
— Distinct address spaces

= OpenACC hides handling of addresses from user
— For every chunk of accelerated data, two addresses exist
— One for CPU data, one for GPU data
— OpenACC uses appropriate address in accelerated kernel

= But: Automatic handling not working when out of OpenACC
(OpenACC will default to host address)

— host_data use_device uses the address of the GPU device data
for scope

Andreas Herten | OpenACC Interoperability | 17 October 2017 #4]25

sociation

Member of the Helmholtz As:

The host_data Construct O JULICH

FORSCHUNGSZENTRUM

C
= Usage:
double* foo = new double[N]; // foo on Host
#pragma acc data copyin(foo[0G:N]) // foo on Device
{
#pragma acc host_data use_device(foo)
some_lfunc(foo); // Device: OK!
}

= Directive can be used for structured block as well

Andreas Herten | OpenACC Interoperability | 17 October 2017 #5]25

The host_data Construct O JULICH

FORSCHUNGSZENTRUM
Fortran

= Usage example

real(8) :: foo(N) ! foo on Host
!Sacc data copyin(foo) ! foo on Device

!'Sacc host_data use_device(foo)
call some_func(foo); ! Device: OK!
!'Sacc end host_data

!Sacc end data

= Directive can be used for structured block as well

Andreas Herten | OpenACC Interoperability | 17 October 2017 #5]25

sociation

Member of the Helmholtz As:

The Inverse: deviceptr !)JULICH

When CUDA is involved

= Fortheinverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
— Use this data in OpenACC context

= deviceptr clause declares data to be on device

Andreas Herten | OpenACC Interoperability | 17 October 2017

FORSCHUNGSZENTRUM

#6]25

sociation

Member of the Helmholtz As:

The Inverse: deviceptr 0JULICH

. . FORSCHUNGSZENTRUM
When CUDA is involved

= Fortheinverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
— Use this data in OpenACC context
= deviceptr clause declares data to be on device
= Usage (C):
float * n;
int n = 4223;
cudaMalloc((void**)&x,(size_t)n*sizeof(float));
// ...
#pragma acc kernels deviceptr(x)
for (int 1 = 0; 1 < n; i++) {
x[i] = i;

}

Andreas Herten | OpenACC Interoperability | 17 October 2017 #6]25

The Inverse: deviceptr 0JULICH

. . FORSCHUNGSZENTRUM
When CUDA is involved

= Fortheinverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
— Use this data in OpenACC context

= deviceptr clause declares data to be on device

= Usage (Fortran):

integer, parameter :: n = 4223
real, device, dimension(N) :: x ! automatically on device
integer :: i

!

!Sacc kernels deviceptr(x)

8 do i=1, n
x(i) = 1
end do

!'Sacc end kernels

E
K
H

Andreas Herten | OpenACC Interoperability | 17 October 2017 #6]25

#) j0LICH

FORSCHUNGSZENTRUM

Tasks

E
§
2

Andreas Herten | OpenACC Interoperability | 17 October 2017 #7]25

#) j0LICH

FORSCHUNGSZENTRUM

Tasks

Task 1

E
§
2

Andreas Herten | OpenACC Interoperability | 17 October 2017 #8]25

Task 1 #) j0LICH

. FORSCHUNGSZENTRUM
Introduction to BLAS

= Use case: Anything linear algebra
= BLAS: Basic Linear Algebra Subprograms

— Vector-vector, vector-matrix, matrix-matrix operations
— Specification of routines

— Examples: SAXPY, DGEMV, ZGEMM

— http://www.netlib.org/blas/

= CcuBLAS: NVIDIA’s linear algebra routines with BLAS interface,
readily accelerated
— http://docs.nvidia.com/cuda/cublas/

= Task 1: Use cuBLAS for vector addition, everything else with
OpenACC

£
E

Andreas Herten | OpenACC Interoperability | 17 October 2017 #9]25

Task 1 #) j0LICH

cuBLAS OpenACC Interaction orenesm

= CuBLAS routine used:

cublasDaxpy(cublasHandle_t handle, int n,

const double +xalpha,
const double *X, int incx,
double *y, int incy)

= handle capsules GPU auxiliary data, needs to be created and
destroyed with cublasCreate and cublasDestroy

= xandy point to addresses on device!
= cuBLAS library needs to be linked with -1cublas

£
K
H

Andreas Herten | OpenACC Interoperability | 17 October 2017 #10(25

Task 1 #) j0LICH

FORSCHUNGSZENTRUM

CcUBLAS on Fortran

= PGl offers bindings to cuBLAS out of the box

integer(4) function cublasdaxpy_v2(h, n, a, x, incx, y, incy)
type(cublasHandle) :: h

integer :: n

real(8) :: a

real(8), device, dimension(*) :: x, vy
integer :: incx, incy

= Usage: use cublasincode;add -Mcuda -Lcublas during compilation

= Notes
— Legacy (v1) cuBLAS bindings (no handle) also available, i.e. cublasdaxpy()
— PGlI’s Fortran allows to omit host_data use_device, but not recommended
— Module openacc_cublas exists, specifically designed for usage with OpenACC (no
need for host_data use_device)
= Both not part of training

— https://www.pgroup.com/doc/pgicudaint.pdf

Andreas Herten | OpenACC Interoperability | 17 October 2017 #11]25

sociation

Member of the Helmholtz As:

Task 1 #) j0LICH

Vector Addition with cuBLAS forseesETE

= Location of code:
Interoperability/tasks/{C,Fortran}/taskl

= Parts of task:
Go through vecAddRed. {c,F03}, work on TODOs
— Usehost_data use_device to provide correct pointer
— Check cuBLAS documentation for details on cublasDaxpy()

= Compile with make

Andreas Herten | OpenACC Interoperability | 17 October 2017 #12]25

Task 1 #) j0LICH

Vector Addition with cuBLAS forseesETE

. TASK
= Location of code: -

Interoperability/tasks/{C,Fortran}/taskl

= Parts of task:
Go through vecAddRed. {c,F03}, work on TODOs
— Usehost_data use_device to provide correct pointer
— Check cuBLAS documentation for details on cublasDaxpy()

= Compile with make

JURECA Getting Started

module load PGI CUDA

salloc --reservation=oaccl7 --partition=gpus --nodes=1 --time=1:30:00
— --gres=meml28,gpu:4

make

srun ./vecAddRed.bin

£
K
H

Andreas Herten | OpenACC Interoperability | 17 October 2017 #12]25

#) j0LICH

FORSCHUNGSZENTRUM

Tasks

Task 2

E
§
2

Andreas Herten | OpenACC Interoperability | 17 October 2017 #1325

Member of the Helmholtz Association

Task 2 #) j0LICH

FORSCHUNGSZENTRUM
CUDA Need-to-Know

= Use case:
— Working on legacy code
— Need the raw power (/flexibility) of CUDA
= CUDA need-to-knows:
— Thread — Block — Grid
Total number of threads should map to your problem; threads are
alway given per block
— Akernel is called from every thread on GPU device
Number of kernel threads: triple chevron syntax

kernel<<<nBlocks, nThreads>>>(argl, arg2, ...)

— Kernel: Function with __global__ prefix
Aware of its index by global variables, e.g. threadIdx.x
— http://docs.nvidia.com/cuda/

Andreas Herten | OpenACC Interoperability | 17 October 2017 #14(25

sociation

Member of the Helmholtz As:

Task 2 #) j0LICH

Vector Addition with CUDA Kernel: C forseesETE

= Task 2: CUDA kernel for vector addition, rest OpenACC
= Location of code: Interoperability/tasks/C/task2

= Marrying CUDA C and OpenACC:

— Alldirect CUDA interaction wrapped in wrapper file cudawrapper. cu,
compiled with nvcc to object file (-c)

— vecAddRed. c calls external function from cudaWrapper.cu (extern)

< vecAddRed.c:main() — cudaWrapper.cu:cudaVecAddwrapper() —
cudaWrapper.cu:cudaVecAdd() — GPU

= Go through vecAddRed.c and cublasWrapper. cu, work on TODOs
— Usehost_data use_device to provide correct pointer
— Implement computation in kernel, implement call of kernel
— make

Andreas Herten | OpenACC Interoperability | 17 October 2017 #15(25

Task 2 #) j0LICH

Vector Addition with CUDA Kernel: Fortran forseesETE

= Task 2: CUDA kernel for vector addition, rest OpenACC
= Location of code: Interoperability/tasks/Fortran/task2
= Marrying CUDA Fortran and OpenACC:

— No need to use wrappers!
— OpenACC and CUDA Fortran directly supported in same source
— Having a dedicated module file could make sense anyway
= Go through vecAddRed.F03 and work on TODOs
— Usehost_data use_device to provide correct pointer

— Implement computation in kernel, implement call of kernel

— make

£
E

Andreas Herten | OpenACC Interoperability | 17 October 2017 #15(25

#) j0LICH

FORSCHUNGSZENTRUM

Tasks

Task 3

E
§
2

Andreas Herten | OpenACC Interoperability | 17 October 2017 #1625

Task 3 A JULICH

Vector Addition with Thrust: C forseesETE

TASK
= Thrust -

— Template library for CUDA C/C++ (similar to STL)

— Offers many pre-made algorithms for popular computing tasks

— Usually works with C++ iterators, but understands C arrays as well
— http://thrust.github.io/

= Task 3: Use Thrust for reduction, everything else of vector
addition with OpenACC
= Location of code: Interoperability/tasks/C/task3

= Parts of task:
Go through vecAddRed. c and thrustWrapper. cu, work on TODOs
— Usehost_data use_device to provide correct pointer
— Implement call to thrust: :reduce using c_ptr

= Use make for compilation

£
E

Andreas Herten | OpenACC Interoperability | 17 October 2017 #17(25

Task 3 A JULICH

Vector Addition with Thrust: Fortran forseesETE

= Thrust

— Template library for CUDA C/C++ (similar to STL)
— Offers many pre-made algorithms for popular computing tasks
— Usually works with C++ iterators, but understands C arrays as well
— http://thrust.github.io/

= Task 3: Use Thrust for reduction, everything else of vector
addition with OpenACC

= Location of code Interoperability/tasks/Fortran/task3

= Parts of task:
Go through vecAddRed.F09, thrustWrapper.cu and
fortranthrust.F03, work on TODOs
— Thrust used via ISO_C_BINDING (one more wrapper) — familiarize

yourself with setup

— Usehost_data use_device to provide correct pointer
— Implement call to thrust: : reduce using c_ptr

= Use make for compilation

Member of the Helmholtz Association

Andreas Herten | OpenACC Interoperability | 17 October 2017 #17(25

#) j0LICH

FORSCHUNGSZENTRUM

Tasks

Task 4

E
§
2

Andreas Herten | OpenACC Interoperability | 17 October 2017 #1825

Task 4 A JULICH

Statlng the Problem FORSCHUNGSZENTRUM

= We want to solve the Poisson equation

A®(x,y) = —p(x,y)

with periodic boundary conditions in x and y

= Needed, e.g., for finding electrostatic potential ® for a given
charge distribution p

= Model problem

p(x,y) = cos(4mx)sin(2my)
(xy) € [0,1)?

= Analytically known: ®(x, y) = ®g cos(41x) sin(2my)
= Let’s solve the Poisson equation with a Fourier Transform!

Andreas Herten | OpenACC Interoperability | 17 October 2017 #19]25

Member of the Helmholtz Association

Task 4 A JULICH

FORSCHUNGSZENTRUM

Introduction to Fourier Transforms

= Discrete Fourier Transform and Re-Transform:

~ — _ank p o 2my
fk:Zfe I e fi= ek

= Time forall fi: O(N?)
= Fast Fourier Transform: Recursively splitting — O(N log(N))

= Find derivatives in Fourier space:

N ~
£ = ikfen*

|
-

x
Il
<)

It’s just multiplying by ik!

Andreas Herten | OpenACC Interoperability | 17 October 2017 #20(25

Member of the Helmholtz Association

Task 4 A JULICH

FORSCHUNGSZENTRUM

Plan for FFT Poisson Solution

Start with charge density p
Fourier-transform p
p+ F(p)
Integrate p in Fourier space twice
b —p/ (kK + k)
Inverse Fourier-transform cT)

¢+ F)

Andreas Herten | OpenACC Interoperability | 17 October 2017 #21]25

Member of the Helmholtz Association

Task 4 A JULICH

FORSCHUNGSZENTRUM

Plan for FFT Poisson Solution

Start with charge density p
Fourier-transform p

~ CuFFT
p<— F(p)

Integrate p in Fourier space twice
A ~ OpenACC
b —p/ (K + k) P
| Fourier- form ¢

nverse Fourier-transtorm ¢ CUFET

¢+ F)

Andreas Herten | OpenACC Interoperability | 17 October 2017 #21]25

Task 4 A JULICH

FORSCHUNGSZENTRUM
CUFFT: C

= CcUFFT: NVIDIA’s (Fast) Fourier Transform library
— 1D, 2D, 3D transforms; complex and real data types
— Asynchronous execution
— Modeled after FFTW library (API)
— Part of CUDA Toolkit
— Fortran: PGI offers bindings with use cufft
— https://developer.nvidia.com/cufft

cufftDoubleComplex #*src, *tgt; // Device data!
cufftHandle plan;
// Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
cufftCreatePlan(plan, Nx, Ny, CUFFT_z2Z);
5 cufftExecz2z(plan, src, tgt, CUFFT_FORWARD); // FFT
cufftExecz2z(plan, tgt, tgt, CUFFT_INVERSE); // iFFT
// Inplace trafo HN----"
cufftDestroy(plan); // Clean-up

£
K
H

Andreas Herten | OpenACC Interoperability | 17 October 2017 #22|25

Task 4 A JULICH

FORSCHUNGSZENTRUM
CUFFT: Fortran

= CcUFFT: NVIDIA’s (Fast) Fourier Transform library
— 1D, 2D, 3D transforms; complex and real data types
— Asynchronous execution
— Modeled after FFTW library (API)
— Part of CUDA Toolkit
— Fortran: PGI offers bindings with use cufft
— https://developer.nvidia.com/cufft

double complex, allocatable :: src(:,:), tgt(:,:) ! Device
integer :: plan, ierr
! Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
ierr = cufftCreatePlan(plan, Nx, Ny, CUFFT_z2Z7)

5 ierr = cufftExecz2Z(plan, src, tgt, CUFFT_FORWARD) ! FFT

ierr = cufftExecz2z(plan, tgt, tgt, CUFFT_INVERSE) ! iFFT

! Inplace trafo NP

ierr = cufftDestroy(plan) ! Clean-up

E
K
H

Andreas Herten | OpenACC Interoperability | 17 October 2017 #22|25

sociation

Member of the Helmholtz As:

Task 4 A JULICH

FORSCHUNGSZENTRUM

Synchronizing cuFFT: C

= CUDA Streams enable interleaving of computational tasks
= CcuFFT uses streams for asynchronous execution

= cuFFT runs in default CUDA stream:;
OpenACC does not — trouble

= Force cuFFT on OpenACC stream
#include <openacc.h>
// Obtain the OpenACC default stream id
cudaStream_t accStream =
(cudaStream_t) acc_get_cuda_stream(acc_async_sync) ;
// Execute all cufft calls on this stream
cufftSetStream(accStream);

Andreas Herten | OpenACC Interoperability | 17 October 2017 #2325

sociation

Member of the Helmholtz As:

Task 4 A JULICH

FORSCHUNGSZENTRUM

Synchronizing cuFFT: Fortran

= CUDA Streams enable interleaving of computational tasks
= CcuFFT uses streams for asynchronous execution

= cuFFT runs in default CUDA stream:;
OpenACC does not — trouble

= Force cuFFT on OpenACC stream
use openacc
integer :: stream
! Obtain the OpenACC default stream id
stream = acc_get_cuda_stream(acc_async_sync)
! Execute all cufft calls on this stream
ierr = cufftSetStream(plan, stream)

Andreas Herten | OpenACC Interoperability | 17 October 2017 #2325

Member of the Helmholtz Association

Task 4 A JULICH

OpenACC and CUFFT FORSCHUNGSZENTRUM
= Use case: Fourier transforms
= Task 4: Use cuFFT and OpenACC to solve Poisson’s Equation
= Location of code: Interoperability/tasks/{C,Fortran}/task4

= Parts of task:
Go through poisson.{c,F83} and work on TODOs

solveRSpace Force cuFFT on correct stream; implement data
handling with host_data use_device
solveKkSpace Implement data handling and parallelism

= Use make for compilation
= Note for Fortran: Code not well-tested! Might contain errors.

Andreas Herten | OpenACC Interoperability | 17 October 2017 #24(25

Summary & Conclusion A JULICH

FORSCHUNGSZENTRUM

= [|f needed, OpenACC can play team with
— GPU-accelerated libraries
— Plain CUDA code
= Link externally compiled object (e.g. with nvcc) into
PGI-compiled OpenACC program
Alternative: use -ccbin=pgc++ asanvcc flag

= For Fortran, ISO_C_BINDING might be needed

Member of the Helmholtz Association

Andreas Herten | OpenACC Interoperability | 17 October 2017 #25(25

Member of the Helmholtz Association

Summary & Conclusion A JULICH

FORSCHUNGSZENTRUM

= [|f needed, OpenACC can play team with
— GPU-accelerated libraries
— Plain CUDA code
= Link externally compiled object (e.g. with nvcc) into
PGI-compiled OpenACC program
Alternative: use -ccbin=pgc++ asanvcc flag

= For Fortran, ISO_C_BINDING might be needed

Andreas Herten | OpenACC Interoperability | 17 October 2017 #25(25

#) j0LICH

FORSCHUNGSZENTRUM

Appendix
Glossary

Andreas Herten | OpenACC Interoperability | 17 October 2017 #1]2

Member of the Helmholtz Association

Glossary | A JULICH

FORSCHUNGSZENTRUM

CUDA Computing platform for GPUs from NVIDIA. Provides,
among others, CUDA C/C++. 2, 3,4,5,6,11,12,13, 22,
23,24,26,27, 33, 34, 35, 36, 38, 39

NVIDIA US technology company creating GPUs. 16, 33, 34, 41
OpenACC Directive-based programming, primarily for many-core
machines. 1,2, 3,4,5,6,7,8,11,12,13, 16, 17, 18, 23,
24, 26,27, 31, 32, 35, 36, 37, 38, 39

PGI Compiler creators. Formerly The Portland Group, Inc.;
since 2013 part of NVIDIA. 18, 33, 34

Andreas Herten | OpenACC Interoperability | 17 October 2017 #2]2

